
Renormalisation of a hierarchical 3
4 model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1988 J. Phys. A: Math. Gen. 21 1753

(http://iopscience.iop.org/0305-4470/21/8/011)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 06:38

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/21/8
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math.  Gen.  21 (1988) 1753-1758. Printed in the U K  

Renormalisation of a hierarchical 4: model? 

T C Dorlas 
School of Theoretical Physics, Dublin Institute for Advanced Studies, I O  Burlington Road,  
Dublin 4. Ireland 

Received 23 November 1987 

Abstract. We define a hierarchical model in d > 2 dimensions with a d4 interaction which 
is a true model of statistical mechanics in that it can be described by a set of potentials 
admitt ing Gibbs states. We show that the renormalisation of this model leads to  a 
transformation of local potentials which corresponds to  a transformation of Gibbs measures 
in the thermodynamic limit. Finally we show how this transformation can be used to  
obtain a cont inuum limit in the three-dimensional case, using analyticity techniques 
developed by Gawedzki and  Kupiainen. 

1. Introduction 

We study a hierarchical model analogous to the model introduced by Baker [ l ]  who 
first pointed out its simple renormalisation group structure. A hierarchical model with 
discrete spins was introduced earlier by Dyson [2]. Mathematical investigation of 
hierarchical models and  their renormalisation was initiated by Bleher and Sinai [3] 
and  elaborated by Collet and  Eckmann [4]. More recently Gawedzki and Kupiainen 
[ 51 developed powerful techniques to treat these models using analyticity properties 
of the interaction. In the following we study the continuum limit of a hierarchical 
model with 44 interaction in three dimensions, and state the final existence result 
which can be obtained using these techniques. Details of the proof can be found in 
the author’s thesis [ 6 ] .  Our  hierarchical model differs from the one introduced in [ 5 ]  
in that it can be described by a Hamiltonian that admits Gibbs states. The existence 
of a continuum limit for the translation-invariant 4; model is already long established 
[7,8]. However, the renormalisation group method illustrates nicely the origin and  
necessity of the counterterms that have to be added to the so-called ‘naked’ Hamiltonian. 
Due to the asymptotic freedom in the ultraviolet it turns out to be possible to construct 
strongly interacting continuum theories. 

2. The model and the renormalisation transformation 

We first define a Gaussian measure yc on R Z d  with a hierarchical covariance C given 
by 

x 

+ Presented at the conference on Marhemarical Problems in Srarisrical Mechanics held at Heriot-Watt 
University on 3-5 August 1987. 
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Here L >  1 is a fixed integer, and we have divided the lattice Z d  into blocks B L ( x )  of 
side L indexed by x E Z d :  

BL(X)  ={x E Z d /  - $ L <  x - LX S i L }  (2 .2)  

where x is the index of the block containing x, i.e. X E  BL(X)  and X I k i  = X I k - ” .  The 
matrix T(x, y )  is defined by 

1 - L-d  i f x = y  L if X # y. 
r ( x , y ) =  -L-”  if x = j ,  x # y (2 .3)  

Note that C is not translation invariant. One easily shows that C,, behaves as L-Zur(Xs’)  
for s(x,  y )  + CO, where s(x,  y )  + 1 is the smallest k Z 1 so that x i k )  = y”).  Thus S(x, y )  = 

is a kind of ‘hierarchical distance’ between x and y. Taking U = i ( d  - 2 ) ,  C,, L”‘.’ 1 

mimics the power-law behaviour of ( -A)-’(g,  y )  = constant x Ig - y l - d + 2 .  One can 
show that yc satisfies the DLR conditions [9 ,10]  with respect to the foliowing potentials 
vX (for finite x c zd 1: 

Vr(&) = i ( l  - C d ) / ( 1  - L - d - ’ )  
yP{,,,](4,, 4 , )  = L - l d + Z i ( s l l - , ~ i * l )  

vx = O  

( L 2 - l ) / ( l  - L - d - * )  (2.4) 

if 1x1 > 2. 

Proposition 1. The Gaussian measure yc, with hierarchical covariance C given by (2 .1)  
with u = t ( d  - 2 ) ,  is a Gibbs measure with respect to the potentials (2 .4) .  

The main ingredient of the proof is the fact that 

c /B , ,1=2(1  - ~ Y ~ ) / ( l - L - ~ ) < c c  
, E Z d  

where 
r B,, = c L -  ld+2ikr(Xlkl, y l  A I )  

k = O  

is the inverse of the matrix C. 
Let us now add a local interation to 2’. Define 

Y G Z *  
V ( 4 ) =  c U(&) 

and put 

(2 .7)  

U( 4,) = i rd;  + igd;. ( 2 . 8 )  
Using Dobrushin’s existence theorem [ l l ]  (see also [12]) one can prove (see [6]) the 
following theorem. 

Theorem 1. There exists a Gibbs state p for the hierarchical c $ ~  model defined by the 
potentials 

YY(&) = $ ( l -  L-d  I / (  1 - L - d - ’ ) +  U(&) 
y{y,,)(& 4, )  = L - l d f 2 H r l ‘ . \  ) + I )  ( L ’ - l ) / ( l - L - d - 2 )  (2 .9)  
Vx = o  if IX1>2 
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The hierarchical covariance has the nice property that, under the (block-spin) renor- 
malisation transformation, local interactions, i.e. interactions of the form (2.7), are 
conserved. Indeed, let us define a block-spin transformation as follows. Given 4 E RZ" 
we define a block average M4 = 4'  by 

(2.10) 

The transformed measure p ' =  R p  is then the image measure under the mapping 
M :  p ' =  M ( p ) .  Note that 

RYC = Yc. (2.11) 

Indeed, one easily calculates the characteristic function 

J exp( i(  4, f ) ) R yc  ( d 4 = exp(i( ~ 4 ,  f ) )  y c  ( d 4 ! 
= 5 exp(i(4,  M l f ) ) Y c ( d 4 )  

=exp(-$(M% CMtf)), 

Hence Ryc is a Gaussian measure with covariance 

C' = MCM' = C. (2.12) 

We now show that p'  is also a Gibbs measure for the hierarchical model, but with a 
transformed local potential V ' ( 4 ' )  = ZTczti ~ ' ( 4 : ) .  Let us first make a heuristic calcula- 
tion. Formally, we have, for an  arbitrary function F on R I = R ' with A c Z d  finite, 

Now 

c,) = L - ~ ~ C , ,  + rrJ. (2.13) 

so let us put 

qLIy = L-"4: + 5, (2.14) 

and 

Yc(d4)  = Yc(d4 ' )Yr(dO.  (2.15) 

The field 6 is a fluctuation field satisfying M5 = 0, i.e. y, is concentrated on the 5 with 
zero average on each block. The decomposition (2.15) was first introduced by Sinai 
[13] and used extensively by Gawedzki and  Kupiainen [ 14, 151. Using this decomposi- 
tion we can compute the renormalised measure p' as follows: 

F ( 4 ' \ ) p ' ( d 4 ' )  = I F ( ( M d ) d p ( d 4 )  
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Now using the fact that yc decouples over the blocks so that y I - = Q ,  yI ~, we find 

1 F ( 4 ' \ ) P f ( d 4 ' )  

(2.16) 

We have normalised U '  so that ~ ' ( 0 )  = 0. We remark that r, = To is independent of x; 
it  is the restriction of r to a block. Therefore U '  does not depend on 1 and we can 
omit all indices x in (2.16). It is now easy to prove the following rigorous statement. 

Proposition 2. Assume that p is a Gibbs measure for the hierarchical model with 
potentials (2.9). Then p'= R p  is a Gibbs measure for the hierarchical model with 
potentials (2.9) modified by replacing U with U '  given by (2.16). 

Proof: If  p is a Gibbs measure for the hierarchical model with local potential U then 

(2.17) 

where y(d4,14,') denotes the conditional distribution of 4 \  given 4 \ ~ .  We want to 
prove 

or, equivalently, 

for all measurable I c a\, J c I2 
Now, because of the independence of 5 and 4',  we have 

(2.18) 

(2.19) 

Here ,? is the union of blocks labelled by the points of A, i.e. ,? = uyc \ B L ( x ) .  Using 
(2.19) and the transformation formula (2.16) it follows that 

I I  exp[-L,  \ U ( ~ ~ ) I Y ( ~ ~ \ I ~ \ C )  
5 expr - x x €  \ U ( 4  :)I Y (d4'\14'\') 

(2.20) 

Now B y ,  does not depend on y - Ly if x f y (see (2.6)). It follows that the measure 
y(d4i l (  L-"4:  + [ , I ,  E i G )  is in fact independent of 5. Integrating (2.20) with respect to 
4 ' \ c  and using (2.171, the validity of (2.18) easily follows. 

- - I ~ i ( d t i ' )  I w - l i i ,  e x ~ [ - ~ . r ~ i ~ ( ~ , ) I ~ ( d ~ i l ( ~ - ~ ~ : + 5 , ) , t i i )  
I Y ~ ( ~ ( T c )  J ~ X P [ - C , , ~ U ( ~ ~ ) I Y ( ~ ~ T I ( L - ~ ~ :  +t,),ti') ' 
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3. The continuum limit 

It is well known that the renormalisation group provides a means of constructing a 
continuum limit. This can be done in a two-step process. First one constructs a 
sequence of lattice fields d,, satisfying the consistency condition 

These can be rescaled to obtain fields cp,(x) =(4n)L" \ -  with L-"Zd on a sequence 
of finer and finer lattices. The second step consists of proving the existence of the 
limit p,( f )  = p(f )  for a class of smooth functions f; e.g., f E Y ( R d ) .  (For an 
elementary discussion of this process, see [ 1 6 ] . )  We concentrate here on the first step 
in the process; this involves the renormalisation of the field. 

The lattice fields 4,, can be obtained in the following way: let 41,, be a lattice 
approximation to the continuum field we wish to construct, with variable parameters 
depending on m ;  we obtain +,, as the limit 

d,, = L"" lim M " - " 4 , , , .  
m - 3 :  

The distribution of the field 4,,,, will be given by the potential (2.8) but with parameters 
r, and g ,  depending on m. In order to see how rm and g ,  have to be varied with m, 
we apply the renormalisation transformation (2.16) once. To second order in perturba- 
tion theory we obtain 

r' = L2( r + 3 ag  - 3 arg - 9a 'g' - 6cg')  

( g  - 9 a g ' )  g '  = L4-" (3.3) 

where a and  c are constants: a = 1 - L - d ;  c = ( 1  - L-d  ) (  1 - 2L-d) .  Let us consider the 
case d = 3. We can read off from the transformation formulae (3.3) the way in which 
r, and g ,  have to depend on m. Indeed, taking 

rm = L- ' " ( ro -3ay ,L"g ,+6cmg~)  

g ,  = L-"g, 
(3.4) 

with y, = ( 1  - L-" ' ) / (  1 - L- I ) ,  we find that ( r r - f l l ,  gr- ' " )  converges as m + W .  In  
fact we can already guess from the the form of the equations (3.3) that (3.4) suffices 
to all orders of perturbation theory since higher-order terms in (3.3) are all of order 
s L-" if we insert (3.4). This is also true for q5'6 terms, 4'' terms, etc, that appear in 
~ ' ( 4 ' ) .  Notice that the first counterterm in the expression for r, is just a Wick-reordering 
term, i.e. it results from replacing 44 by : 4 4 :  in (2.8). The second counterterm is the 
usual mass-renormalisation term corresponding to the logarithmically diverging Feyn- 
man diagram 

We remark here that, not only is (3.4) correct to all orders of perturbation theory, 
it is even correct non-perturbatively. This can be proven using analyticity techniques 
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developed by Gawedzki and  Kupiainen [5]. To make this statement precise, let us 
define the initial local potentials 

o,(cp) =fr,cp’+tg,cp4 (3.5) 

where rm and gm are given by (3.4) with go>O. Then the following holds. 

Theorem 2. Assume L large enough. Then there exists mo( L, ro,  go) such that, if m 3 m,, 
exp[-(9flu,,,)(cp)] converges uniformly in cp E R as n + 00, where 9 is the transforma- 
tion (2.16). 

For a proof, see [6]. Notice that there is no restriction on ro and go> 0. This is because, 
for large enough m, rm and gm will be small, so that we can d o  perturbation theory 
in r,  and g,. The fact that r,  and g, approach zero as m +CO is the ultraviolet 
asymptotic freedom of the theory. 
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